Phonon anomaly at the charge ordering transition in 1T-TaS2

نویسندگان

  • L. V. Gasparov
  • D. B. Tanner
چکیده

The infrared reflectance of the transition-metal chalcogenide 1T-TaS2 has been measured at temperatures from 30 K to 360 K over 30–45 000 cm ~4 meV–5.5 eV!. The optical conductivity was obtained by Kramers-Kronig analysis. At 360 K only modest traces of the phonon lines are noticeable. The phonon modes are followed by a pseudo-gap-like increase of the optical conductivity, with direct optical transitions observed at frequencies above 1 eV. As the temperature decreases, the low-frequency conductivity also decreases, phonon modes become more pronounced, and a pseudogap develops into a gap at 800 cm ~100 meV!. We observe an anomalous frequency dependence of the 208 cm infrared-active phonon mode. This mode demonstrates softening as the temperature decreases below the 180-K transition. The same mode demonstrates strong hysteresis of the frequency and linewidth changes, similar in its temperature behavior to the hysteresis in the dc resistivity. We discuss a possible relation of the observed softening of the mode to the structural changes and changes in electronic properties associated with the 180-K transition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy.

We use time- and angle-resolved photoemission spectroscopy with sub-30-fs extreme-ultraviolet pulses to map the time- and momentum-dependent electronic structure of photoexcited 1T-TaS(2). This compound is a two-dimensional Mott insulator with charge-density wave ordering. Charge order, evidenced by splitting between occupied subbands at the Brillouin zone boundary, melts well before the lattic...

متن کامل

Atomic lattice disorder in charge-density-wave phases of exfoliated dichalcogenides (1T-TaS2).

Charge-density waves (CDWs) and their concomitant periodic lattice distortions (PLDs) govern the electronic properties in several layered transition-metal dichalcogenides. In particular, 1T-TaS2 undergoes a metal-to-insulator phase transition as the PLD becomes commensurate with the crystal lattice. Here we directly image PLDs of the nearly commensurate (NC) and commensurate (C) phases in thin,...

متن کامل

Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS2 by time resolved photoelectron spectroscopy

Photoexcitation of the Mott insulator 1T-TaS2 by an intense laser pulse leads to an ultrafast transition toward a gapless phase. Besides the collapse of the electronic gap, the sudden excitation of the charge density wave (CDW) mode results in periodic oscillations of the electronic states. We employ time resolved photoelectron spectroscopy to monitor the rich dynamics of electrons and phonons ...

متن کامل

A charge-density-wave oscillator based on an integrated tantalum disulfide-boron nitride-graphene device operating at room temperature.

The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe2, 1T-TaS2 and 1T-TiSe2 exhibit unusually high transition temperatures to different CDW sy...

متن کامل

Ultrafast melting of a charge-density wave in the Mott insulator 1T-TaS2.

Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics of the charge-density wave in the Mott insulator 1T-TaS2. After strong photoexcitation, a prompt loss of charge order and subsequent fast equilibration dynamics of the electron-lattice system are observed. On the time scale of electron-phon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002